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Abstract—Achieving longer mission duration, increased science of finding optimal solutions to the trajectory design problem
return, and flexability for follow on observations motivated by is an increased capacity of potential science return (quantified
unanticipated discoveries is facilitated through improvements in intuitively by number of “interesting places” visited, and

cifency of compuiing near-optimal saluions of constrained 1ength of fime on station” at each). Given constraints such
optimization problems. Practical complications to be faced also as finite time and fuel, there is obviously a maximum value
include solving an ensemble of constrainted optimization prob- of the “potential science return”. Feasible solutions possibly
lems for random initial and/or final states, uncertainty in the dy-  far away from globally optimal solutions, may be entirely

namics, and quantifying state measurement error during tracking acceptable for some less ambitious missions with a small

and navigation. Here we formulate a probabilistic approach to mber of obiectives. However. for missions the ambitious
control allowing convergence to optimal solutions over an entire nu | : '

set of boundary conditions, as well as allowing other sources of g0al of maximizing potential science return, it is increasingly
uncertainty to be included. Furthermore, we use insight provided important to have algorithms which can explicitly control

from a global view of phase space structure (i.e. a “dynamical global distance to optimal solutions.
systems” viewpoint of the free trajectories) to guide computation g tima) control problems are notoriously difficult to solve
and improve efficiency of trajectory generation. A numerical for nonlinear dynamical constraints (see for example Bryson
example of providing initial guess solutions for the restricted -
three-body problem is given, and future work including stochastic and Ho, 1969). However, what has recently been recognized
algorithms for improvement of these initial solutions discussed. and applied (Howell et al. 1997, Serban et al. 20028z
et al., 2004) to current and future mission design (including
. INTRODUCTION Genesis, WMAP, and Planck scheduled for launch in 2008)
Increasing science return from space missions, throughthe ability of dynamical systems theory to provide insight
longer mission duration and flexability for follow on obserand guide computation of optimal trajectories. Specifically,
vations motivated by unanticipated discoveries, is facilitatedde science goals of these missions have been enabled by
through improvements in trajectory generation, particularlysing halo orbits about the Lagrange point L1 of the Earth-
with respect to computational efficiency of computing neaBun-spacecraft three-body dynamics. These halo orbit of the
optimal solutions. Practical complications to be faced includgenesis mission was the first to be designed entirely from
solving an ensemble of constrained optimization problems fdynamical systems theoretic insight This work validated the
random initial and/or final states, including uncertainty in theoncept of trajectories which follow invariant manifolds of
dynamics, and quantifying state measurement error duritige underlying dynamics, and led to the general idea of the
tracking and navigation. Here we formulate a probabilistitnterplanetary superhighway”, in which trajectories can be
approach to control allowing convergence to optimal solutiomesigned by hopping on and off the manifolds of the dynamics
over an entire set of boundary conditions, as well as allowingoviding free or extremely low cost transport throughout 3
other sources of uncertainty to be included. Such a capabildy higher body systems. A wide range of mission concepts
is particularly important in both the design stage (wherdgave subsequently been proposed which make use of these
typically a “sensitivity analysis” is important in order totrajectories, and re-revitalized the goal of computing optimal
validate the capability of the spacecraft to achieve the missionnear optimal trajectories for space mission design. Provided
objectives even in the presence of launch vehicle error ang can meet the challenges of computing these trajectories and
other perturbations) and in flight, requiring precise control oveubsequently navigating themye are rewarded with longer
uncertainty for tracking and navigation. mission duration and increased potential for science return
Ideally, mission design could begin with scientists listing Compounding the challenge are sources of uncertainty that
a collection of “interesting way points” (a rank ordered prirequire not just high accuracy and “near-optimal” solutions for
oritized list of scientifically interesting targets, with times ormne set of initial and final target states, but an entire ensemble
station, etc.). The problem then is to solve foraptimal tra- of these problems due to uncertainty in initial conditions
jectory, which hits as many of the way points of interest witt{such as arising from launch vehicle error). The importance of
the smallest expenditure of, for example, fuel. The importancharacterizing the entire set of optimal solutions for random



boundary conditions is important for validation of a mission In this paper, we first review the formulation of trajectory
design to achieving a majority of the objectives even in thiesign as a problem of optimal control, and discuss the
presence of various uncertainties, including launch vehidlesulting algorithmic challenges in solving these problems.
error and/or perturbations to the model of the dynamics. Hallde then discuss the three-body dynamics and the dynamical
orbits for example, have the unfortunate characteristic thestems theoretic insight leading to near-optimal trajectories.
their successful navigation is extremely sensitive to laun&tle then provide an overview of the probabilistic framework
vehicle error . In contrast to interplanetary missions whefer these problems, and comment on progress made in the first
launch vehicle error can be corrected within 7-14 days aftstep of initializing the samples of solutions for sets of random
launch, halo orbit missions must generally correct laundfoundary conditions. We close with a discussion of work in
vehicle error within the first 7 days after launch or th@rogress leading to stochastic algorithms for improvement of
required AV to correct the trajectory will be beyond thethese trajectories and convergence in probability to sets of
spacecraft’s capability (Serban et al, 2002). We therefore nematimal solutions for random boundary conditions.
to control the computational error over an entire ensemble of
boundary conditions in order to accommodate initial periods glf OVERVIEW OF TRAJECTORYDESIGN AND NAVIGATION
spacecraft checkout and orbit determination which invariabfy: Statement of the Problem
cut into our overall fuel budget. Here we provide a brief overview of the trajectory design
Precise quantification of uncertainty in the actual trajectoproblem. We are interested in finding control inputg) such
is therefore increasingly important in order to accuratehat for some dynamicg o i (with 3 the system state vector
compute and closely navigate optimal trajectories utilizing thend F o iy the vector field of the dynamics evaluated at the
underlying “connectivity of phase space” provided by the fullurrent state) the trajectory, given as a solution to the non-
underlying nonlinear dynamics. For this purpose we therefos@tonomous ordinary differential equation (ODE)
need an algorithmic framework which provably converges )
to optimal solutions for randomly chosen initial and/or final y = Foy(t)+ul(t) @)
states. It is difficult to prove convergence of determinisrayerses from some specified initial stat@) to some spec-
tic algorithms for optimal control problems with nonlineaified target final statey(7").
dynamical constraints due to the potential convergence toas an example for this paper, we consider the dynamics of
local as opposed to global minima of the objective functiofhe (circular restricted) three-body problem including control

defining optimality.The goal of convergence on sets of optimahpyts involve the system of equations (see for example Serban
solutions with randomly chosen boundary conditions leads gg 1. 2002)

to consider a probabilistic approach to the entire problem

itself. Moreover, other sources of uncertainty can naturally U1 = Ya (2)
be included in this framework, including perturbations to the Y2 = Y (3)
dynamics, as well as the closed-loop control challenge of S
. . o . . Ys = Yo (4)

smoothing (quantifying uncertainty in the entire past trajectory, ouU
up to and including the current state) when supplied with state Ya = 2y2+ 70 T uy (t) (5)
measurements with noise. yéU

Our strategy is to 1) use insight provided by dynamical U5 = —2y1+ — +ua(t) (6)
systems theory to quickly sample from what we call the “initial Oy2
ensemble” of solutions, 2) construct a sequence of probability U6 = 8£ + us(t) (7
measures directly which provably converge on sets of optimal I3
solutions given randomly chosen boundary conditions, and m(t)ur(t) = 11(t)Vaozze sin0(t) cos () (8)
3) use sampling algorithms such as Markov Chain Monte m(t)uz(t) = 1m(t)Vhozzie sinb(t) sin ¢(t) 9)
Carlo or particle filters to directly sample solutions from mt)us(t) = 11(t)Viossie cos6(t) (10)
these probability densities, with increasingly better solutions
“|earned” as Computation progresses_ Where in the rotating Coordinate SyStem

While more expensive than standard deterministic schemes 9 o 1—p
for single BC's, as discussed aboue goal is really to v = 5(?/1 +ya) + (g1 + )2 + 42 + 2]1/2
control the figure of merit defining optimality over entire sets 31 . Y2 s
of solutions, in order to permit validation (during design) (11)

2 4,2 211/2
and implementation (during flight) of mission scenarios in the (1 = 1= p)* +y3 + 3]

presence of uncertaintyAs mentioned above, the potentialind where in the above we have assumed the control inputs are
payoff of rendering the probabilistic approach computationaltyenerated by a rocket with nozzle velocity,..;. and which
efficient enough for practical use are trajectories which offean swivel through angle§, ¢), and finally can be throttled

the capacity for increased science return through increadgdcontrolling .

mission duration and added flexibility for follow-on observa- The true solutions of the dynamics, otherwise known as the
tions motivated by unanticipated discoveries. free trajectories are simply those which, for a given initial



condition y(0) havew(t) = 0. Clearly, the set of potential The boundary conditions are mixed wigti0) = x; and A(T').
target stateg(7') is limited by the restriction of vanishing These problems are notoriously hard to solve for nonlinear
control input. Provided we have a “powerful rocket”, we cadynamical constraints due to the lack of knowledge (or ed-
effectively go anywhere in the phase space desired, and in fagdated guess) as to the initial value of the adjoint variable
for any chosen path, the control input required to follow thakquired for forward integration (or an approximate path
path is trivially computed by re-arranging the abovestdve needed to integrate backwards in time for the adjoint variable).
for u(t) according to In fact, trying to numerically integrate these equations with
) poorly guessed initial conditions fok(0) can “...produce
u(t) = g-Foy(t) (12) wild trajectories in the state space. These trajectories may be
Note that in what follows we will refer tai(t) either as the SO wild that values of:(¢) and/orA(t) exceed the numerical
“residual”, or “defect”, or “control input” {(t) is one measure range of the computer!” (Bryson and Ho, 1969).
of error typically controlled when numerically solving initial
value problems for ODE’s). Typically, theost of following
any given path can be related to the “magnitude” of the control It has recently been recognized that nonlinear trajectories
input, measured with a norm on the space of continuopsovide a network of free trajectories that offer transport to
functions widely separated regions in phase space (the 'IPS’). This

C. Guiding Computation with Dynamical Systems Theory

T 1a provides an efficient means to sample from the initial ensemble
[ull Lo = (/ dt ||U(t)||?p> (13) (as we will demonstrate). In other words, we can map out
the invariant manifolds in the phase space, and patch together
with || - |l;» a vectornorm (i.e. the norm of the instantaneousgrajectory segments.
control vector at the time). Mapping out the IPS network holds the promise of max-
Denoting the cost of traversing the patft) from specified imizing the reachable sebf configuration space at minimal
boundary conditiong(0) = z;, y(T) = xy in time T cost For space missions specifically, we want to maximize

the volume of locations in the Solar System that are reachable

Py(wi,ap)) = 1G9tz xp) = Foy(tziay)llee (4 \ithin some time with a given fuel budget. It has recently been

our goal is to find an optimal path* so that recognized that, when including the full non-linearity of the
. ] three and higher body dynamics, there are “free” trajectories
y* (@i, oy, T) = minLly(z, 27, )] (15)  (i.e. true solutions of the dynamics) that nevertheless result in

transport to widely different regions of configuration space.
. . ) sapecifically, these trajectories tend to wind on and off various
formu!at!on of opt|mal open—logp C°’.‘”°' using th_e calculg variant manifolds in the phase space, and are suggestive of a
of Vaf'a“c’”.s' W.h.'Ch we now bT'ef'y d|sguss (we wil use thl?1ew approach to computing solutions to optimal control, with
later in a_5|.n_1pl|f|ed Imgar _settmg later in Qrder o effICIentI3fhe computation of trajectories guided by insight provided by
FompUt%m'_tt'ﬁl a;l))proxmattlons totti}gf which can then be dynamical systems theoretic views of the global structure of
improved with subsequent computation). phase space. Provided we can meet the challenges of comput-

B. Optimal Open-Loop Control ing these trajectories and subsequently navigating thenare

Following (Bryson and Ho, 1969), optimal (open-loop ewar(_jed with longer mission duration and increased potential
or science return

control is typically formulated as constrained optimization,
with the associated “action” functional

In order to compute such an optimal path we can turn to

1. A PROBABILISTIC APPROACH
J o= Oy, T +v-y(T)+) {A-yﬁj*l A. Motivation
! Independent of the algorithm used, we always have to

tit1
+/ ' dt L(y,u,t) + \(t) - (f(y,u,t) —9) — A y} supply an “initial guess” of the solution to the control problem
ti which is to be improved with subsequent computation until

(where in the abovg (y, u,t) = F oy + u) which gives, from some stopping criterion (we reach some target level of the

the calculus of variations, the equations optimality figure of merit or reach our maximum allowed time
of computation). We refer to the initial guess solutions (we
= f(y,u,t) have an entire set for the set of initial and/or final states) as
_ _87L -~ of theinitial ensemble Assuming some distribution on the initial
dy Oy and final states, we have (even for deterministically supplied
0 — oL N 8f)\ initial solutions) adistribution of residualsP(®)(T").
Ju Ou r
AT = ) POI) = / dy / d(ai, a5, T) plas,ay,T)
¢ 0

O = 3 (16) 5 (7 =Ty (i) (17)



where the initial solution approximation, denoted as a function

Forward and Backward Paths

of the boundary conditions is denoted (¢; z;, = ;). There is 04
a limiting distribution given by finding the optimal solution 003
for every set of randomly chosen BCB*)(T") where o2
T om
P(*)(F) = / d'y/d(xi,xf,T) p(xi,xp, T) 0
0 —001
) ('y — F(y(*)(a:i, mf)) (18) 0o ‘
We therefore want an algorithm (deterministic or otherwise) :m S
which provably converges in distribution s oesmoemo o e
P"(T) —, PUUT) (19)

. . . Fig. 1. Numerically integrated trajectories given by choosing random initial
and even better if it does so quickly (i.e. in as few a numbesnditions about the CR3BP Lagrange (fixed) poibtsand L2, followed by

of “steps” as possible, i.e. with as little computational expenégegrating forward and backward in time resprectively.
as possible).
It is difficult to prove convergence in distribution for deter- ) o .
ministic systems, as for non-linear dynamical constraints V9@l - sample from various marginalized conditionals from
often encounter convergence to local minima, resulting int3e above joint densityWe refer the interested reader to
distribution that is alwaysnajorizedby the limiting measure (Jéwell, 2007, in preparation) for more details concerning the
(more concentrated about lower residuals, since each solutf@fstruction of the factors in the joint probability density
reaches a local minimum with residual greater than that of tRBOVe as well as proofs of convergence to sets of optimal
global optimum for each set of BC’s). The goal of convergen&@!utions given randomly chosen boundary conditions.
in distribution of the residual for random boundary conditions Y& now turn to sampling from the initial ensemble, which
(or at the very least random initial conditions) leads us #§ &ways used to initialize any algorithm of choice. As
consider a probabilistic approach to the entire problem its¢fe€ntioned previously, our strategy is to use insight from
Our strategy is to 1) construct a sequence of probability mdiynamical systems theqry 'to effeciently genelrate tra'Jectorlles
sures directly which have the desired convergence propertied have the rough qualitative character of optimal trajectories
above, and 2) using sampling algorithms (including MCMdPOssibly over a wide range of total timés.
particle filters, etc) to directly sample solutions from these
probability densities. With this approach, we have an algo-
rithmic framework for any dynamical system, which provably- Dynamical Systems Insight into Choice of BC's
converges in the probabilistic sense above. Following (Gomez et al., 2002, Nonlinearity) we have
Finally, other sources of uncertainty can naturally be invery educated guesses for choosing initial conditions such
cluded in this framework, including perturbations to theéhat, when integrated forward and backward in time from
dynamics, as well as the closed-loop control challenge @fe vicinity of the Lagrange points, pass near each other
smoothing (quantifying uncertainty in the entire past trajectorylong a Poincare section at the plagpe = 1.0 From the
up to and including the current state) when supplied with stadgnamical systems theoretic viewpoint, these forward and
measurements with noise. backward integrated trajectories follow the unstable and stable
(forward in time) manifolds, which we now know intersection
in the planey; = 1.0. Shown in figure 1 are such paths, which
we will smoothly patch together to form a continuous path as
) an initial trial solution to the optimal control problem.

IV. SAMPLING FROM THE INITIAL ENSEMBLE

B. Components of the Probabilistic Approach
Roughly, the joint density for “everything” is

p(Dzv Y1:n, 1, Ta L, xf) = P(Dx|il/1:n, L, lf)p(yln‘xz; Zyf
xp(n|T)p(T'|zi, xg)p(zs, @) B. Approximate Trajectories

where(D,,, D,,) are noisy measurements of the state and con-The intuition is that we can quickly generate reasonably
trol inputs respectivelyy;.,, is a parametrized representatioryood approximations to optimal solutions by creating a “li-
of a continuous time solution estimator (for example the stabeary” of shorter length solution segments, for which dynam-
vector at the discrete timgs,.,, }, but other forms can be usedical systems theory and “global views of phase space” can
as well), T is the total time, andx;,xy) are the boundary provide guidance, followed by smoothly patching these seg-
conditions. The “inverse problems” of inferring trajectoriesnents together in order to satisfy postulated or assumed global
given initial conditions, and/or control inputs given target finatonstraints (such as paths which solve a control problem, agree
states and noisy state measurements along the way, are thigh noisy measurements, etc.). Here we consider to manner
viewed as solved by sampling from the associated conditiorialwhich we can patch together these solution segments - we
densities. What is interesting is that a very broad class pifirase this as a control problem and provide a solution from
problems can be formulated with this specific mathematicalvariational approach.



To do this note that for any path we have the required control

inputs to follow that path given by
@(t) = F o z(t) + u(t) (20) - \ /

One way to find low residual paths is to consider paths built o

up by smoothly transitioning between local path segments of ’ “\

small residual (i.e. as generated by integrating forward and \\j//

backward initial value problems). We can then simply define

092 094 096 098 1 102 104 106

w(t) + ou(t) = Fox — Foy— [Joy|(z(t) —y(t)) (21)

where we have arbitrarily set the “control inputa(t) to be

determined by some chosen path which satisfies the dynamics ) . . . .
Fig. 2.  The continuous path obtained by solving the optimal linear control
linearized about the reference paths

problem given by matching specified boundary conditions about the two
(a1, t) =9+ [Joyl(z(aram, t) —yt)) +a(t)  (22)

Lagrange points.
subject to the boundary conditions. If we denote the residual
of the reference path segmentseaghen we have the upper
bound on the residual of our path

As discussed previously, calculus of variations gives the
system of equations

t = gi+Joyi(zr—y)+tu
. < :
lé —Foal| < [l + [l5u] (23) 5 = oy A
We are free to choose any path, but the intuition is that good u = —\¥
choices are given by those that follow the reference paths but vo= AT) @27)

satisfy BC’s while minimizing quadratic cost.
Specifically, the goal is to find paths, given a reference pafde know that in the absence of the endpoint boundary
(with jumps at discrete times), which minimizes the quadratonditions (withv = 0), thatu = 0, which is consistent with
“defect” cost subject to the piecewise dynamical constraintshe above equations, and where forward in time the solution
will track y1 (¢) up to the first jump, after which the fluctuation
fl,ut) = g+ [Toyil(z —yi) +u (24)  will evolve linearly during the next arc, and so on. Also, with
The overall functional to be minimized in order to solve thi§ JUMP« = y. Since we have a piecewise linear system, we
constrained optimization problem is might expect that the vectar linearly depends on the initial
and final state.
_ 2 tis1 As noted previously, stability of the numerical solution
7= (/ dt ul ) +v- () +Z (_)\'x ta of the above is a major concern. One approach to control
tins ' this is essentially a stabilized march method (see Ascher et.
+/ dt \(t) - f(m,u,t)+/'\-x> (25) al., 1995), with some minor modifications. The idea is to
ti integrate2n solutions to the optimal linear control equations
forward and backward in time from the jump, with initial
gonditions given by variations in each of the standard basis.
As we march the collection of fundamental solutions along,
we monitor their linear independence (here measured by the
Stel) — ef:j dt Joy;(t) (w(t;) — v (t:)+ condition number of the evolved covariance matrix). When
J Y Yitts a threshold is reached, we reset the initial conditions of the
/t e f:] dt” Joyj(t”)u(t,)> (26) fundamental solutions to the original (therefore giving the

Note that the dynamical constraints here are= [J o
¥i](1)d(t) + u(t), which gives the solution on each pieceW|s
interval, for any driving forceu(t),

original covariance matrix).
] . Using this procedure with the forward and backward paths,
Also note that for any exact solution to the dynamics Fox, and a jump at the time of closest approach, we obtain the

there is a driving force. = Flox —y; — Joy;(x —y). The idea smoothed continuous path shown in figure 2.
is that for reference paths which are close to or exact solutions

over the intervalsi;, that if we find paths that smoothly V. CONCLUSIONS

transition from one manifold to the other with the control input Motivated by the potential increase in science return from
that minimizes||u||, then this will be a close to a true solutionspace missions enabled by improvements in trajectory gen-
provided the jumps are small. This problem then allows wsation in the presence of uncertainty, we have formulated a
to patch together many short solution segments, which grebabilistic approach to trajectory generation which provably
“concatenated” together using insight from dynamical systernenverges to entire sets of optimal solutions for random bound-
theory. ary conditions. Such a capability is particularly important in



both the design stage (where typically a “sensitivity analysis”

is important in order to validate the capability of the spacecraft
to achieve the mission objectives even in the presence of
launch vehicle error and other perturbations) and in flight,

requiring precise control over uncertainty for tracking and

navigation.

While optimal control problems are notoriously difficult to
solve for nonlinear dynamical constraints (see for example
Bryson and Ho, 1969), we meet this challenge with recent
insight into the global phase space structure for dynamical
systems relevant for space mission design (Howell et al.
1997, Serban et al. 2002,68ez et al., 2004) as well as a
probabilistic approach which provably converges to sets of
(globally) optimal solutions. Specifically our strategy is to 1)
use insight provided by dynamical systems theory to quickly
sample from what we call the “initial ensemble” of solutions,
2) construct a sequence of probability measures directly which
provably converge on sets of optimal solutions given randomly
chosen boundary conditions, and 3) use sampling algorithms
such as Markov Chain Monte Carlo or particle filters to
directly sample solutions from these probability densities, with
increasingly better solutions “learned” as computation pro-
gresses. In this paper we have demonstrated one approach to
using dynamical systems theory to provide trajectory segments
which can be smoothly joined (using optimal linear control)
to quickly compute initial trajectories with the qualitative
character of optimal solutions. Future work will use stochastic
sampling algorithms tamprove the “cost” figure of merit in
an algorithmic setting which provably converges
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